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Managing and adapting to climate change in urban areas will become
increasingly important as urban populations grow, especially because
unique features of cities amplify climate change impacts. High impervious
cover exacerbates impacts of climate warming through urban heat
island effects and of heavy rainfall by magnifying runoff and flooding.
Concentration of human settlements along rivers and coastal zones increases
exposure of people and infrastructure to climate change hazards, often
disproportionately affecting those who are least prepared. Nature-based
strategies (NBS), which use living organisms, soils and sediments, and/or
landscape features to reduce climate change hazards, hold promise as
being more flexible, multi-functional and adaptable to an uncertain and
non-stationary climate future than traditional approaches. Nevertheless,
future research should address the effectiveness of NBS for reducing climate
change impacts and whether they can be implemented at scales appropriate
to climate change hazards and impacts. Further, there is a need for accurate
and comprehensive cost–benefit analyses that consider disservices and
co-benefits, relative to grey alternatives, and how costs and benefits are
distributed across different communities. NBS are most likely to be effective
and fair when they match the scale of the challenge, are implemented with
input from diverse voices and are appropriate to specific social, cultural,
ecological and technological contexts.

This article is part of the theme issue ‘Climate change and ecosystems:
threats, opportunities and solutions’.
1. Introduction
Devising strategies to manage and adapt1 to the impacts of climate change in
urban areas will become increasingly important as the global population
becomes more and more concentrated in cities and climate continues to
change in ways that have potentially severe impacts on urban populations
and infrastructure. Some urban climate change hazards (physical manifes-
tations of climate change that have detrimental consequences for human
well-being) will be especially challenging to manage (i.e. to reduce) because
urban environments interact with and influence climate in ways that can
amplify (worsen) those hazards. This leaves urban residents with no choice
but to adapt to those hazards, reducing exposure to hazards or their harmful
effects, or to retreat. On the other hand, cities offer opportunities for managing
and adapting to climate change hazards because most services and institutions
are located within cities.

There is increasing interest among city practitioners in using ‘nature-based’
strategies [2], a broad suite of actions aimed at promoting human well-being in
cities using approaches that restore aspects of ‘natural’ (non-urban) ecosystem
structure and/or function. These strategies are seen as more flexible, multi-
functional and adaptable to an uncertain climate future than traditional,
more rigid, approaches [3–5]. Herein, we review the potential for nature-
based strategies (NBS) to reduce climate change hazards in cities. NBS include
parks and open space; intentional plantings; construction of structures that
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restore natural hydrologic function such as stormwater ponds,
bioswales, green roofs, riparian zones; and restoration and
protection of natural protective habitats along coastlines [5].
We begin by reviewing the primary climate change hazards
faced by urban residents, highlighting how cities can amplify
many of those hazards (§2) and the impacts of climate change
hazards on social, ecological and technical (SET) components
of cities (§3). We then review opportunities to use NBS to
reduce exposure to climate change hazards (§4) and manage
and adapt to the SET impacts of those hazards (§5). We
conclude by identifying research priorities (§6).
l/rstb
Phil.Trans.R.Soc.B

375:20190124
2. Exposure to and amplification of climate
change hazards in cities

Cities often are at great risk from climate change because
human settlements are concentrated in areas that increase
the vulnerability of people and infrastructure to climate
change hazards [6]. Furthermore, cities have unique features,
such as high impervious and low pervious cover, that
amplify some aspects of climate change. Thus, several aspects
of climate change are expected to be acutely felt by urban
populations, including sea-level rise, higher mean and
night-time temperatures, reduced snowpack or rainfall
leading to water scarcity, and increased frequency and magni-
tude of extreme events like heavy precipitation, heat waves,
coastal storms, river flooding and drought (table 1). Indeed,
extreme events are the aspect of climate change that will
have the most direct and obvious impact on the greatest
number people in their lifetimes.

(a) Sea-level rise and coastal storms
The rate of sea-level rise is increasing, with projections
of 0.3–1.3 m by 2100 [8]. Globally, human populations
and most major cities are concentrated in low-elevation
coastal zones [9], increasing the exposure of people and infra-
structure to inundation, storm surge, flooding, erosion and
salt-water intrusion. For example, populations in nine Asian
mega-deltas are greatest in areas less than 10 m above sea
level, and many of these populations are growing rapidly
[10,11]. In some sensitive, low-lying areas, such as much
of South Florida (USA), groundwater levels are carefully
managed to prevent intrusion of sea water into the water
supply for greater than 5 million people. However, higher
groundwater elevation reduces water storage capacity of
surface soils, and may amplify overland flooding [12] and
ultimately necessitate retreat from the coast (table 1).

Coastal cities also experience storms that exert impacts
through flooding and sea surge, erosion and wind, and
which are projected to increase in frequency and magnitude
[13]. Sea surge can dramatically amplify coastal flood risk.
In the case of superstorm Sandy (New York City, USA) in
2012, sea surges coincided with high tides, flooding subways
and coastal infrastructure, and inundating an area equivalent
to that projected to flood under a 2080 scenario of rapid ice-
melt [14]. Erosion caused by the storm also undermined
infrastructure along much of the local coastline.

High winds from tropical cyclones can prove devastating
to ecological and technological infrastructure on coasts,
although wind speeds decline rapidly once making landfall.
The coastal cities of East Asia, particularly those in the
Pearl River Delta, Tokyo and Manila, are most at risk from
this type of extreme event [15]. Inland, windthrow and
infrastructure damage can result from other types of
storms. Regardless of storm type, high winds also produce
health risks because of entrainment of air pollutants, includ-
ing disease organisms [16]; this risk is amplified in cities
because they often have elevated concentrations of air
pollutants, including particulate matter, ozone and toxins.

(b) Extreme heat
Global mean temperature has increased 0.8°C since 1880 [17]
and will continue to rise. Warming is exacerbated in cities
by the urban heat island (UHI) effect, whereby cities are
warmer on average than surrounding areas [18]. For example,
US cities are warming 1.5 times faster than rural areas [19].
A number of factors combine to cause UHI effects [20]: lack
of vegetation and associated cooling effects of evapotran-
spiration, high capacity for heat storage in building
materials, high aerodynamic resistance to heat dissipation
and generation of waste heat from energy use by buildings
and vehicles.

Hotter conditions drive impacts on cities through several
mechanisms (table 1). Exceedance of thermal tolerances
constrains activity of humans and other organisms, especially
at low latitudes. Prolonged human exposure is exacerbated
by the UHI, rising night-time minimum temperatures and
longer warm seasons. The energy system is stressed by
increased demand for cooling. Higher temperatures also
exacerbate drought stress and worsen air pollution and epi-
sodes of air stagnation resulting from thermal inversions.
The impacts of heat waves thus will be intensified in cities [21].

Heat waves will be especially likely to cause heat stress in
hot and humid regions [20,22], since heat stress is a function
of both temperature and humidity (along with physiological
and behaviour factors) [23]. In a global analysis of heat
waves and human mortality, temperatures of only 20°C were
lethal (i.e. were associatedwith excessmortality) when relative
humidity was high (80%), whereas the lethal temperature
increased to 30°C at low relative humidity (20%) [24]. Based
on these empirical relationships, Jakarta, Indonesia, is there-
fore predicted to experience anywhere from 117 to 365 d yr−1

of lethal temperature–humidity combinations by 2100 (for a
low- versus high-emissions scenario, respectively), compared
with 9–50 d yr−1 in New York City, USA [24].

(c) Water security, inland storms and pluvial flooding
Compared to temperature change, hydrologic impacts of
climate change will be orders of magnitude more spatially
and temporally variable. Because most cities rely on regional
or distant watersheds for their water supply, or on ground-
water sources that are replenished slowly, the impacts of
climate change on hydrology over broad areas are important
for urban water security. Changes in the total amount,
intensity and seasonality of precipitation all have potential
to influence urban areas. These changes will vary in space,
with some regions seeing greater precipitation and some
seeing less [8]. Cities amplify drought through increased
water demand for maintenance of vegetation or cooling.

Of all natural disasters, river flooding exposes the most
people (379 million) [15] to climate-related hazards. Much
of urban infrastructure is located along rivers and even in
riverbeds, where it is vulnerable to inundation and riverbank
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erosion. Cities have traditionally sought to armour and
strengthen their banks using built infrastructure rather than
rely upon natural floodplains (table 1). This dependence
upon levees, channel straightening and hardening can pro-
duce a false sense of security, especially given the changing
probabilities of flooding [25,26].

High impervious cover in cities exacerbates the impacts
of heavy rainfall and magnifies urban runoff and flooding.
Roads, parking lots, buildings and other impervious
surfaces prevent infiltration. Combined with dense drainage
networks, low infiltration causes higher volume and more
rapid runoff [27–29]. High impervious cover also promotes
pluvial flooding, flooding that occurs when precipitation
rates exceed the capacity of stormwater systems or infiltration
[30]. Such flooding can occur far from coasts or rivers as a
result of brief, intense rainstorms, and will become more
common as the frequency and magnitude of extreme rainfall
increase [8]. Pluvial flooding can damage infrastructure
directly through the force of flowing water, and is often
unpredictable; for example, US Federal Emergency Manage-
ment Administration (FEMA) flood maps usually do not
apply to pluvial flooding [30]. In general, low places in the
urban landscape are most at risk and often inhabited by
people with the lowest capacity to adapt or respond.

(d) Other climate-change-related hazards
In addition to temperature- and water-related hazards, cities
are potentially exposed to extreme events and disturbances
such as fires, tornados, hurricanes, landslides and seismic
events, some of which may be exacerbated by climate
change. Human decisions and settlement locations strongly
influence the exposure of urban residents to these hazards;
for example, fires that once levelled cities around the turn
of the twentieth century no longer pose a threat, but fires at
the urban–wildland interface are on the rise [31]. As people
are increasingly settling at this interface [32], future increases
in fire resulting from climate change [33] will likely increase
human mortality. Even when fire does not directly threaten
urban lives and settlements, wildfires can expose downwind
urban residents to severe air pollution, worsening heat-
related mortality, as happened in Moscow during the Russian
heat wave of 2010 [34].
3. Climate change impacts on social–ecological–
technical components in cities

(a) Social impacts
In cities, extreme temperatures aggravated by UHI effects
will cause a host of heat-stress-related physical health
impacts [35], including heat stroke mortality and morbidity,
dehydration and related illness, and heat exhaustion [36].
The most vulnerable include the elderly, young and socially
isolated, those who lack air conditioning, outdoor workers
and those experiencing homelessness [35–37]. Within cities,
the poor may be more vulnerable to heat exposure because
they often lack air conditioning and live in neighbourhoods
with less vegetative cooling capacity [38,39]. Heat exposure
will also reduce the capacity for physical activity, reducing
worker productivity and exercise activities [36].

Heavy rains and associated pluvial flooding also can
affect human health. Urban runoff entrains and transports
heavy metals, nutrients, salts and pathogenic bacteria from
the landscape to stormwater systems [40,41], resulting in
pulses of high pollution downstream and creating episodic
risks to public health and aquatic ecosystem health.
Combined sewer overflows (CSOs) occur when runoff from
heavy rains overwhelms sewers carrying both stormwater
runoff and human waste, leading to releases of untreated
sewage into surface waters to prevent sewer backups [42].

Climate change can cause human mortality, injury and
displacement directly, by posing immediate hazards, and can
also drive displacement by influencing economic, political,
demographic and social drivers of migration [43,44], with
the greatest impacts in low- to middle-income countries [45].
Exposure of many urban residents to hazards associated
with sea-level rise, storms and river flooding may mean
the damage or loss of homes, safety concerns from erosion
undermining buildings or roads, and contamination of
drinking water supplies. The poor, such as those in informal
settlements, are at greatest risk because they lack adequate
housing and other infrastructure, clean water, and access to
healthcare and emergency services [46]. Extreme heat will
make parts of the world without significant capacity for
adaptation uninhabitable. Even holding average global warm-
ing to 1.5°C since pre-industrial times, 40% of mega-cities,
concentrated in Africa and Asia, will experience periods of
deadly heat indices each year [47]. Warming of 4°C will
translate into periods of deadly heat indices in nearly 80% of
the world’s mega-cities.

Exposure to climate-change-related hazards will have
mental as well as physical health impacts, including in
cities. Weather-related disasters have been related to post-
traumatic stress disorder, depression and anxiety [48].
Extreme heat has been linked to aggression, criminal behav-
iour, suicides, mood disorders and dementia. Disruptions
to livelihoods and health caused by climate-change-related
damage of infrastructure and forced migration will disrupt
social systems and social ties, reducing adaptive capacity of
climate change migrants [48,49].
(b) Ecological impacts
Ecological systems in cities are particularly vulnerable to cli-
mate change because of interactive effects with disturbances,
pests and pathogens, and stressors such as road deicers and
soil compaction. In addition, rapid urban expansion in many
parts of the world likely will alter regional biodiversity [50].

Correlations between climate factors and plant diversity
suggest that urban biodiversity will be sensitive to climate
change. For example, across cities, those with higher maxi-
mum temperatures had lower plant species richness of both
cultivated and spontaneously occurring plants in residential
yards [51]. On the other hand, richness of spontaneous
species increased where winters were relatively mild, a
pattern also seen for urban trees across North America [52].
Thus, climate change may reduce plant species richness in
regions that are already hot, but increase it in colder regions.

Because of UHI effects, limited plant rooting volumes,
compacted soils and contamination by pollutants such as
heavy metals, pesticides, herbicides and salts [53–56], climate
change likely will worsen heat- and drought-related stress on
urban ecological communities [57], particularly where imper-
vious cover and local temperatures are highest [58–60].
Under these stresses, species are likely to be more vulnerable
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to pests and pathogens, whose populations and ranges may
expand with climate change [61,62].

Urban tree cover may be reduced by climate change
because many species of trees currently being planted in
cities will not be suited to future climates [63,64]. In addition,
cities are at risk from accidental introductions of novel pests
and pathogens by the nursery trade [62], and low diversity
of urban forests may promote establishment and spread
of these pests and pathogens [65]. Urban trees are susceptible
to damage and mortality from windthrow associated
with more intense storms, as the root systems of urban
trees often are inadequate to support trees during high
winds [66]. This is because urban soils often are compacted,
waterlogged, drought-stressed or contain fills, and because
trenching, construction or mowing can damage root systems.

In urban lakes and ponds, higher water temperature com-
bined with high nutrient loads will promote blooms of algae
and harmful cyanobacteria [67,68] and extend the period of
stratification [69]. Blooms combined with reduced exchange
of deep waters with oxygenated surface waters can result
in hypoxic events, which kill fish and benthic biota and
stimulate anaerobic biogeochemical processes that release
sediment nutrients into the water column, further contribut-
ing to urban lake eutrophication [69]. More thermally stable
and warmer surface waters, among other factors, will pro-
mote harmful cyanobacteria [67], increasing exposure of
urban residents and pets to cyanobacterial toxins [70].

Most streams in urban areas are drastically altered through
channelization, burial and impoundment [71], which reduces
their capacity to withstand climate-related impacts such as
rising water temperature [72], increased peak flow associated
with extreme events [29] and increased nutrient and pollutant
loading from storms and CSOs. Both urbanization and climate
change interact to adversely affect stream fish populations
and communities, according to models manipulating the
two drivers individually and in combination [73].
(c) Technical impacts
Technical or infrastructure systems are designed and
managed to deliver specific services or protect urban popu-
lations. Services provided include electrical power, water
delivery, mobility (i.e. transportation) and waste manage-
ment; stormwater infrastructure, seawalls and levees, and
climate-controlled buildings (for shelter) provide protection
for urban populations [74,75]. Climate change will have
strong impacts on infrastructure because of its location, age,
design and exceedance of design limits.

Infrastructure is more dense and is co-located in cities,
amplifying technical impacts of climate change hazards
such as storms, as a storm of a given extent and intensity
will cause more damage in urban than in rural areas. Further-
more, urban infrastructure such as power lines, sewer pipes
and water delivery networks often occurs along public
rights of way like roads or streams, which may be vulnerable
to flooding. Thus, the co-location of multiple infrastructure
systems can result in simultaneous failures. Waste removal
infrastructure in some cities is combined with stormwater
conveyance, with both water streams merging at wastewater
treatment plants where pollutants are removed. During
flooding, however, CSOs occur. Thus, there are benefits of
co-location but also potentially severe consequence when
systems fail or their capacity is exceeded.
Infrastructure built to withstand historical climate is
beginning to fail as extreme events become more common,
and building for the past will be inadequate in a non-
stationary world. Many systems are not robust to extreme
events that are happening with ever-greater frequency, not
just because of old age and deteriorating condition [76], but
because they are built to design standards based on past
probabilities (e.g. 1% is a common standard) [77]. This
practice is inadequate in a non-stationary, uncertain world
where the future probability of an event cannot be predicted
from knowledge of the past. Recent efforts to employ non-
stationary flood-frequency analyses [78] show promise for
rethinking infrastructure design.
4. Opportunities for reducing exposure to climate
change hazards with nature-based strategies

NBS make use of living organisms, soils and sediments, and/
or landscape features to reduce climate change hazards or
the amplifying effects of urban features on those hazards.
Such strategies can provide alternative or complementary
approaches to technical strategies and delay the need for
human relocation, buying time to accelerate climate change
mitigation (table 1) [3,79,80]. Diverse NBS, also referred to
as green infrastructure or low-impact development [81],
range from highly engineered structural stormwater control
measures to parks and open space, building materials
and designs incorporating natural elements, conservation
and restoration of natural ecosystems particularly on
coastlines, and intentional plantings (table 1) [5,80]. (Pauleit
et al. [7] provide a useful lexicon for nature-based solutions,
ecosystem-based adaptation, ecosystem services and urban
green infrastructure.)

(a) Sea-level rise and coastal storms
NBS can reduce the growing risks of coastal flooding and
erosion from higher storm surges accompanying sea-level
rise. Conserving and restoring near shore habitats such as
barrier islands, coral and oyster reefs, and kelp and seagrass
beds, and coastal habitats such as dunes, mangrove forests
and saltmarshes can reduce erosion and protect human
settlements [82]. These habitats dissipate wave energy,
attenuate wave height, reduce storm surge, and trap and
stabilize soils and sediments [5,83], and are thus more
resistant (i.e. they sustain less damage) and more resilient
(i.e. they can potentially self-recover) to damaging effects of
storms than grey infrastructure, such as bulkheads and sea
walls [79,83,84].

No nature-based strategy can entirely prevent the gradual
march of seas inland because of sea-level rise. Costly
engineered structures such as sea gates, dikes and pumps,
along with development of alternative water supplies, can
delay the need for human resettlement. Yet, managing
inundation and salinization of drinking and irrigation water
supplies ultimately will necessitate retreat from coastal
areas and relocation of coastal residents [85]. Nevertheless,
NBS such as mangrove forests and salt marshes in
some instances may establish shoreward through sediment
accretion to keep pace with sea-level rise [83], if there is
adequate space between any coastal development and the
waterline.
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(b) Extreme heat
Urban green space, in the form of parks and open space,
green roofs and tree canopy, has received a great deal of
attention regarding its potential to reduce the UHI and
provide relief from climate-change-induced heat waves
[19,86,87]. A meta-analysis of the cooling effects of urban
green space in cities throughout the world found that parks
were 1°C cooler on average than non-park areas, presumably
because of high evaporative cooling and low heat storage,
and these cooling effects extended well beyond the park
boundaries. Local-scale cooling was the only nature-based
benefit rated as ‘high’ among ecosystem services (including
climate regulation, air quality regulation and carbon seques-
tration) assessed for the Barcelona, Spain metropolitan area
[88]. On hot summer days in Phoenix (Arizona, USA), vege-
tated surfaces can be as much as a 25°C cooler than bare
surfaces [38]. Studies of the cooling effects of green roofs in
cities from tropical, subtropical and temperate regions
found inconsistent temperature differences between green
and nearby non-vegetated roofs [86]. Nevertheless, a
modelling study of climate change in US cities found that
100% deployment of green roofs offset projected climate
warming [89], although reflective roofs (technical strategy)
were more effective at cooling than green roofs. Trees provide
shade and evaporative cooling and are generally cooler
than nearby areas without trees [86]. Therefore, increasing
tree canopy in cities is projected to offset some climate warm-
ing and UHI effects [90]. However, in one city, nonlinear
effects of tree canopy were found, whereby increasing the
canopy cover did not yield significant cooling effects until
relatively high canopy cover was reached [91]. Furthermore,
cooling effects of tree canopy were lower at night and when
impervious cover was higher.

(c) Inland storms, pluvial flooding and droughts
NBS such as green roofs, stormwater ponds, bioswales,
raingardens and retention basins can promote infiltration
and groundwater recharge and/or evapotranspiration,
thereby reducing runoff volumes and flow rates during
heavy rain storms [92,93]. If placed strategically in the land-
scape, i.e. dispersed throughout the landscape and placed
adjacent to roads, such strategies can decrease risks of pluvial
flooding [94] and the damaging effects of high-velocity
runoff. For example, in simulations of a Chicago (IL, USA)
watershed, having 10% of the landscape area in green
infrastructure minimized flood risk associated with moderate
storms. However, increasing the storm intensity to that
expected under climate change (today’s 1% probability),
required increasing areal extent of green infrastructure by a
factor of two or more to manage flooding [94]. Indeed,
many nature-based interventions in stormwater systems are
implemented at too small a scale to have any effect on
large-scale, catastrophic events [95]. Thus, significant land
area of stormwater green infrastructure will be needed
to manage increased flood risk in regions predicted to
experience more severe storms.

Many cities have been focused on increasing urban
tree canopy cover, in part to reduce stormwater runoff
volumes [96,97]. By intercepting rainfall, which is stored in
the canopy and eventually evaporated [98], trees may
reduce stormwater runoff volumes and delay peak flows
during low-intensity rainstorms [98]. Transpiration by trees
can potentially reduce runoff by providing greater soil
volume for water storage [98].

Many cities are expanding use of green stormwater
infrastructure to reduce runoff volumes during heavy rain
events, reduce the risk of CSOs and potentially improve
water quality [99–101]. Green infrastructure provides some
capacity for pollutant removal from stormwater [101] and
for receiving and treating CSOs (e.g. constructed wetlands)
[102]. Stormwater green infrastructure traps particulate
nutrients and promotes sorption, biotic uptake or gaseous
losses of soluble nutrients [5,103,104]. Thus, increasing
green infrastructure in the watershed may reduce stormwater
export of nutrients to streams [93,105]. On the other hand,
increasing tree canopy cover near streets contributes litter-
derived nutrients to stormwater [106,107] and green roofs
show inconsistent water quality benefits [108].
5. Managing and adapting to social, ecological
and technical impacts of climate change
using nature-based strategies

Besides reducing climate change hazards and the amplifica-
tion of these hazards in cities to minimize climate change
impacts, nature-based approaches can help cities manage
and adapt to the SET impacts of climate change when they
occur (table 1). The occurrence of disasters may represent
opportunities for city governments to go beyond impact
and effect real change or adapt by ‘building back better’
[109,110]—a social response that may incorporate NBS. In
rapidly urbanizing areas, such as in sub-Saharan Africa and
many parts of Asia, cities have the opportunity to address
climate change as they develop, implementing NBS in the
most effective combinations with grey infrastructure and in
ways that maximize locally valued co-benefits [111,112].

(a) Managing social impacts using nature-based
strategies

Many NBS to manage and adapt to climate change (table 1)
have potential social co-benefits. For example, access and
exposure to green space in cities improves aspects of mental
and physical health [5,113,114]. Urban green space also has
been linked to social benefits such as reduced violence and
crime, although conflicting results indicate a need to under-
stand mechanisms underlying potential links as well as for
standardized approaches to quantifying them [113,115].
Whether NBS to addressing climate change in cities will
have additional social benefits by countering the detrimental
social effects of climate change, including impaired mental
health, reduced social cohesion and increased violence,
remains unknown. What is certain, however, is that the success
of NBS is in large part dependent on public acceptance [116].

(b) Managing ecological impacts using nature-based
strategies

Myriad opportunities exist to manage urban ecosystems to
facilitate transitions to species more suited to a changing cli-
mate [64]. For example, forest managers in Chicago, IL, USA,
identified a number of management actions to reduce urban
forest vulnerability to climate change [64]. Increasing the



Table 2. Research priorities related to implementing NBS for addressing climate change hazards and their impacts.

Ten priority research questions

Effectiveness

1. What kinds, amounts and arrangements of nature-based strategies mitigate different climate-change-related hazards?

2. How transferable are nature-based strategies among cities?

3. Are there nonlinearities (e.g. thresholds or limits) that influence the effectiveness of nature-based strategies for mitigating particular climate-change-

related hazards?

4. Can the amounts and arrangements of green infrastructure be designed to mitigate multiple hazards simultaneously?

5. Under what conditions will climate change hazards overcome the capacity for nature-based solutions to reduce SET impacts in cities?

6. What approaches are most effective for designing for future rather than past climate conditions?

Costs and benefits

7. What are the costs (including disservices) and benefits (including co-benefits) of nature-based strategies relative to grey alternatives, in different social,

environmental and technical contexts?

Equity and environmental justice

8. How can the costs and benefits of nature-based solutions be distributed equitably across different communities within cities?

9. How can cities avoid ‘green gentrification’ and other unintended outcomes of implementing nature-based strategies?

10. How can the implementation of nature-based strategies accelerate improvement of living conditions in the world’s poorest, but fastest-growing, cities?
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diversity of plantings in developed areas and installing
drainage systems to reduce flooding could reduce vulner-
ability of urban forests to extreme events. Planting more
drought-, flood- or heat-adapted species and more pest-
and pathogen-resistant varieties could facilitate the transition
to species better suited to future climate.

In theory, many of the NBS for reducing climate change
hazards have co-benefits for biodiversity in a changing
environment, by providing habitat reserves and corridors
for species migration in the face of climate change. However,
NBS for reducing climate change hazards are not automati-
cally optimal for conserving biodiversity and facilitating
ecological adaptation to climate change. A number of factors
might impede efforts to achieve biodiversity goals [117–120].
These factors include the challenges of coordinating manage-
ment of distributed (often private) small patches of green
space to create habitat patches or corridors at a scale
appropriate to promote species of interest; goals for green
space that conflict with biodiversity goals; management
practices that might be outright detrimental to achieving
biodiversity goals (e.g. mowing, trimming, use of herbicides
and pesticides, planting of ornamentals); and misunderstand-
ing of biodiversity benefits and negative perceptions of urban
green space managed for biodiversity that might generate dis-
satisfaction among urban residents. Thus, enhanced ecological
adaptation to climate change impacts will not occur as an
inevitable outcome of implementing NBS to reduce climate
change hazards, but potentially could be helpful if pursued
with intent and accompanied by education efforts [118].
(c) Managing technical impacts using nature-based
strategies

The use of nature to modify the built infrastructure of a
city may seem antithetical to managing technical impacts in
a city, but in fact many engineers are seeing the value of
incorporating a systems view and redefining risk in the
context of a non-stationary world [42,74]. Designs that
move away from emphasis solely on the probability of
an event to also consider its consequences allow for more
flexible, adaptable infrastructure that is safe-to-fail, not just
fail-safe [77]. For example, the use of protective wetlands
along coasts [82] may reduce the hazard of erosion or wave
damage from storm surges to coastal infrastructure. NBS
can help to counter technical impacts when used alone or
in combination with technical strategies (also known as
hybrid strategies) along an eco-technical spectrum [121] or
green–grey gradient [122,123].
6. Research priorities
Below, we articulate three priority research areas related to
using NBS to manage and adapt to climate change in cities,
articulating specific research questions in table 2. We propose
that in planning for investment in NBS to address climate
change hazards, a city needs to consider the effectiveness
of NBS to reduce climate change hazards and their impacts,
both now and in the future; the costs and benefits of
implementing nature-based versus alternative strategies;
and equity and environmental justice issues related to the dis-
tribution of costs and benefits across different cities globally
and across communities within cities. Answers will depend
on the particular social, environmental and technical
context of each city; in other words, there is no a priori
reason to expect ‘one size fits all’ solutions to cities’ climate
change hazards.

(a) How effective are nature-based strategies at
reducing the impacts of climate change hazards?

Research should address the degree to which NBS can be
implemented at scales that match the scale of hazards and
impacts caused by climate change [116] (table 2). Such scaling
questions need to be addressed in the contexts of individual
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cities: their local biome, climate and hydrogeology (e.g.
sources of surface and groundwater); the magnitude and
types of anticipated climate change hazards (e.g. droughts,
extreme rainfall, sea-level rise); their specific SET character-
istics (e.g. spatial segregation of risks, the age, type and
distribution of green and grey infrastructure, and the social
barriers to implementation of NBS); and opportunities to
combine green with grey infrastructure. An important
question is how NBS scale with implementation area, and
how their effectiveness alone or in combination with grey
infrastructure depends on their physical position in the land-
scape [84,93,94,116]. For example, a study of green roofs in
Beijing, China, found that the reduction in UHI scaled line-
arly with green roof area: while 100% green roof coverage
resulted in significant city-wide cooling (1.5°C), 10% green
roof coverage led to only 0.1–0.2°C cooling [124]. On the
other hand, a study in Madison (Wisconsin, USA) found
that temperature was related to tree canopy cover in non-
linear ways that depended on impervious cover, spatial
scale and time of day (daytime versus night-time) [91].
Given that space is limited in most cities, or its use for
public good is complicated by private ownership, implement-
ing NBS at sufficient scales and in appropriate configurations
to allow meaningful adaptation may not be feasible given
projected climate change impacts. Furthermore, many NBS
require significant development time to reach maximum
efficacy [125], or efficacy may increase and then decrease
over time, owing to growth of plants, changes in substrate
(e.g. soils and sediments) and deposition of litter or particu-
late matter. Thus, scaling in time as well as in space
must be considered to fully understand the benefit–cost
ratio of NBS.
(b) What are the costs and benefits of nature-based
strategies relative to alternatives?

There is a need to accurately and comprehensively analyse
costs and benefits, including disservices and co-benefits, of
NBS relative to grey (or non-nature-based) alternatives
(table 2) [5], recognizing that cities may not have mechanisms
for valuing non-market services contributed by NBS. Two
examples of this research approach include studies of green
roofs and studies of nature-based coastal defences. Studies
of the costs and benefits of green roofs have compared
green roofs against those of reflective ‘cool’ roof alternatives,
where costs included installation, maintenance and replace-
ment costs, along with heating costs during cool times of
the year, while benefits included reductions in energy use,
avoided morbidity and mortality, and other health benefits
from cooling, as well as reductions in stormwater runoff
and air pollution [126,127]. Considering environmental con-
text is critical, since cooling roofs will increase heating costs
more in regions with colder climates and green roofs will
increase irrigation costs more in regions with drier climates
[126]. A synthesis of cost–benefit analyses of coastal defences
worldwide showed that coastal habitats have high potential
for protecting coastlines from flooding and erosion [128],
and that salt marshes and coral reefs can be two to five
times more cost-effective than engineered structures in
protecting coastlines. These examples provide models for
research analysing costs and benefits of implementing NBS
to address climate change impacts.
(c) Are the benefits of nature-based strategies
distributed equitably within and across cities?

Those who are most likely to experience climate change
impacts within and across cities may also be those with
the least access to nature-based relief from those impacts.
Poorer communities within cities often are more vulnerable
to climate change hazards because their members live or
work in high-exposure areas and because they may lack the
resources to adapt to climate change (e.g. air conditioning,
adequate shelter or drainage). In addition, urban green
spaces such as parks are more accessible to wealthy, white,
able-bodied urban residents [129]. Similarly, tree canopy
cover is often concentrated in wealthier neighbourhoods [130].
For example, many cities in the Amazon delta are experiencing
rapid urbanization; these communities are highly vulnerable
to flooding and contaminated water. Informal settlements, in
particular, concentrate the urban poor in flood-prone areas
that lack basic sanitation and water infrastructure [6]. This
pattern repeats globally, with rapidly expanding cities in the
decolonized world surrounded by unplanned settlements that
develop an informal infrastructure that is rarely adequate to
protect their inhabitants, while wealthy urban residents enjoy
benefits of higher ground, adequate infrastructure or access to
green space [131].

There is some hope that small-scale NBS can provide
solutions to large disparities in vulnerability, if appropriate
to the particular location [132]. However, a lurking challenge
is the green gentrification that can accompany nature-based
strategy implementation. New inequities often arise in
urban greening projects when underprivileged people are
denied access or representation (in planning and decision-
making on siting of nature-based projects), or are edged out
by deliberate attraction of high-income clients to newly
constructed green space [133,134]. To ensure that all voices
are heard in decision-making about NBS and that access
and distribution are fair, deliberate policies that avoid green
gentrification need to be developed in concert with urban
planning. Kabisch et al. [135] outline four recommendations
to ensure environmental justice in planning for urban green
spaces: that the distribution of green spaces ensures equitable
access; that efforts are made to give voice to all members
of the population, including underrepresented groups; that
interactions and social exchanges are open and safe; and
that local characteristics are considered.

Across cities, NBS may be less effective in cities that will
be most exposed to climate change hazards. Many cities in
the Global South are equatorial, where rising temperature
is more likely to cross tolerance thresholds. Many of these
cities are also located in low-lying coastal areas and thus
are vulnerable to storms and sea-level rise. Finally, cities
in the Global South are rapidly growing and many lack
financial means to keep up with construction of basic critical
infrastructure, let alone combat the impacts of climate
change through the construction of adequate protective infra-
structure or design or preservation of NBS [74,75]. Without
major acceleration of climate change mitigation, these cities
may become unliveable and no magnitude of nature-based
strategy implementation can sufficiently reduce the hazards
they face. Yet, in others, NBS may provide a means to accel-
erate improvement of living conditions (table 2). Goal 11 of
the Sustainable Development Goals adopted by the United
Nations [136] pertains to sustainable cities and communities.



royalsoc

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

03
 J

un
e 

20
21

 

Of the 10 targets for Goal 11, three relate specifically to
NBS: increase access to green space, reduce loss of lives and
livelihoods from disaster, and increase city planning to
create safe, inclusive, resilient and sustainable cities.
ietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B
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7. Conclusion
In this paper, we have considered how cities may amplify
the hazards of climate change to SET components of cities.
NBS have potential to reduce climate-change-related hazards
directly; to dampen, rather than amplify, their effects on cities;
and to minimize SET impacts. Reaching that potential requires
fundamental research to understand the mechanisms that lead
to amplification of hazards in cities and to quantify the con-
ditions under which NBS will be effective. Researchers and
practitioners must also understand fully the costs and benefits
of green-infrastructure approaches to adapting cities to a chan-
ging climate, including both disservices and co-benefits, relative
to traditional, grey approaches. We need a much-improved
awareness of and commitment to ensuring that the most
vulnerable populations within and among cities are not
neglected, as proactive plans are developed to build social–
ecological–technological resilience to the challenges posed by
a rapidly changing climate. Finally, we conclude that NBS to
meet climate-related challenges are most likely to be effective
when they match the scale of the challenge and are appropriate
to a specific place, in terms of its social, cultural, ecological and
technological milieu.
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Endnote
1Throughout, we use adaptation, hazards, impacts, vulnerability and
exposure according to the definitions of Field et al. [1].
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